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Abstract—The present paper proposes an adaptive Cartesian grid method, namely blocked adaptive Cartesian grid
method to solve Maxwell’s equations with complex geometries using FD-TD scheme. The present method could be
an alternative to the subgrid method of Yee’s grid. Adaptive Cartesian grid methods were classified as the unstructured
grid method and originally introduced in the CFD area to solve complex geometry objects. The grid data structure is
octet-tree based one and is different from Yee’s grid. It was introduced to electromagnetics using Riemann solver, which
was very complicated and dissipative. Unstructured grids are not convenient to FD-TD scheme so we introduce blocked
cell in order to apply FD-TD scheme on the grids. The structure and the procedures are presented in the paper. The
accuracy and effectiveness of the present method is confirmed by comparing the conventional FD-TD solutions. The
results show the efficiency of the method.
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1 Introduction

To simulate the transient solution of the electromagnetic
field, finite difference-time domain (FD-TD) scheme is
the most popular algorithm. The Yee spatial lattice and
Leap-Frog time-marching scheme gives excellent numer-
ical characteristics and the popular boundary conditions,
Dirchlet and Neumann, are quite straightforwardly to be
implemented.

The FD-TD scheme can deal with the complex geome-
tries of the perfect electric conductive object by the stair-
case approximation[1] or the contour-path method. But if
the finest part of the geometry is much smaller than the
wave length, the total grid number would be too large to
compute within a reasonable computer memory and time.
Subgrid methods may be one solution of the problem [11].

The unstructured grid would be the another solution for
the problem. But the FD-TD scheme basically cannot dis-
cretized on the unstructured grid.

Meanwhile, in the computation fluid dynamics (CFD)
area, Cartesian grid methods have been developed. Struc-
tured orthogonal grid system may extend through solid
wall boundaries of geometries within the computational
domain. The primitive method flags cells to be internal,
intersected or external to the geometries[12]. The external
cells are considered to be volume elements for the simu-
lation.

Then, Cartesian grid method fall into two categories
with the demand of accurate solutions. One keeps its
structured grid nature and introduces embedding struc-
tured subgrids within the underlying coarse structured
grids. Adaptive Mesh Refinement (AMR) is one of them
[4]. Figure2 shows an example of AMR in two dimen-
sion. The intersected cells by a circle in the underlying
coarse grids are tagged in blue. The blue-tagged cells are

Embedded Patch for Subgridding

Underlying Coarse Grid

: Cells tagged for refinement

Figure 1: Schematic image of Adaptive Mesh Refine-
ment. Intersecting meshes with a circle are tagged (blue
cells) and are to be refined.

to be refined. In the AMR procedure, several embedded
rectangle patches are defined so as to contain the blue-
tagged cells. Then, the embedded rectangle patch areas
are refined.

The other considers the Cartesian mesh as an unstruc-
tured collection of h-refined meshes. The data struc-
ture is not the same as structured grids but the same
as unstructured grids. Adaptive Cartesian grid method
was introduced as an unstructured Cartesian grid method
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and has shown the great success in simulating com-
plex geometries[2],[5]. Figure 2 shows a case of two-

Figure 2: 2D case of Adaptive Cartesian grid method.

dimensional adaptive Cartesian grid method. Beginning
with a root cell covering whole domain, the intersected
cells by the circle are recursively bisected. This simple
procedure finally gives Fig.2.

The actual data structure (quad-tree) of a two dimen-
sional adaptive Cartesian grid method is shown in Fig.3
The case shows a quad-tree structure. In this two dimen-
sional case a tree node (a cell) may have four child nodes.
In the case of three dimension, a node may have eight chil-
dren. Level of a node is defined as the depth of the nest in
the tree structure. The root node is specified as ’level 0’
(Fig.3).

As for the recent situation of Computational Electro-
Magnetics (CEM), subgrid methods are popular [6],[8]
and many commercial softwares declare their support of
subgridding. Liu and Sarris [7] proposes AMR-FDTD
subgridding algorithm. The method generates meshes
with solution adaptive. When electric field changes
steeply in some places, the method automatically refines
the area. When the field doesn’t need fine meshes any-
more in certain area, the method coarsens the fine meshes.

The adaptive Cartesian grid method was applied to
CEM [10],[13]. The discretization scheme was the Fi-
nite volume method with a Riemann solver. The scheme
well-used in CFD area because of the good stability and
resolution for discontinuity. The scheme is complicated
and was numerically dissipative [14]. To control the dis-
sipation, certain flux-limiting filter may be needed.

Boundary conditions of perfect-conducting (PEC) wall
is very difficult to formulate in a case of sharp point of
PEC. The difficulty comes from the grid system and the
discretization scheme.

The present paper describes an adaptive Cartesian grid
method, namely blocked adaptive Cartesian (BAC) grid
method, which is capable of the FD-TD scheme. In the
first part of the paper, the algorithm of the blocked adap-
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Figure 3: Octree data structure of Adaptive Cartesian grid
method. Each black circles indicates leaf nodes in the tree
structure and they correspond to the cells as is shown with
the numbers.

tive Cartesian grid method is described. Then an evalua-
tion case is presented to show the ability of the method in
accuracy and in effectiveness.

2 Blocked Adaptive Cartesian Grid Method

The adaptive Cartesian grid method is categorized in the
unstructured grid as is described in the previous section.
The element cell is hexagonal like structured Cartesian
grid however, the data structure is quite different from that
of the structured grid.

The adaptive Cartesian procedure is described in Fig.5.
This procedure generates an Octet-tree (octree) structure
of the grid. Because a node may have eight child-nodes in
three dimension as is shown in Fig.4. Each leaf-node of
the octree indicates the corresponding grid cell (Fig.3).

Because of the unstructured grid nature of the adaptive
Cartesian grid method, we find that it is difficult to ap-
ply the FD-TD method to the adaptive Cartesian method.
Because the FD-TD simply needs Yee’s grid, a structured
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Figure 4: Cell division in three dimensional case. The
data structure becomes octet-tree based because each
node may have 8 children.startstack all cells take one cell from stackLmin, LmaxDivide untilLevel =  Lmin
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Figure 5: Cell division flow chart. The level of cells are
bounded by Lmin, Lmax. The cut-cells with a geometry are
divided until a certain criteria is satisfied.

grid.

As a solution of applying FD-TD to the octree adap-
tive Cartesian method, we introduce a block cell which
consists of a structured grids instead of a single grid cell
[4],[9]. Each block cell contains equi-distance grids with
the same number in each coordinate direction. Figure 6
shows the example of the grids and the block cells. The
coloured blocks indicate the block cells and the solid lines
indicate the grids in the each block cells. The outermost
grids of a blocked cell are overlapped between the ad-
jacent cells. A normal FD-TD calculation can be per-
formed on the each block cell. The boundary values in
the block cell are interchanged with the adjacent block
cells in each time step. An interpolation is performed in
the interchange if necessary.

Figure 6: The grids in the block cell and relation of adja-
cent cells.

3 Cell Division for a Geometry

This section describes the criteria in Fig.5. First, we de-
scribe the strategy to decide a cell to be divide into smaller
cells which is described in [2]. The strategy gives a crite-
ria which determines whether a intersected cell by trian-
gular facets is to be divided or not.

Next, a method which is a fast algorithm to find inter-
secting triangular facets with respect to a cell is described.

3.1 Division Criteria

3D geometry is often provided as a CAD file, especially
DXF or Stereo Lithography (STL) data are often used.
Both data may consist of a set of triangulated facets of the
geometry’s surface. We need criteria to decide the cells
to be divided in order to resolve the geometry through
the triangulated facets. We adopt a curvature detection

(a) (b)

Cell i Cell i
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θ
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!ni

Ti
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Figure 7: Schematic 2D view of angular variation of nor-
mal vector of triangles within cut-cell i. (a) is small vari-
ation case and (b) is large variation case.

strategy [2]
Suppose a cell is intersected by triangular facets Ti. n⃗i

is the normal vector of the facets ( Fig.7).
Angle variation V j can be defined as,

V j = max(nk j ) − min(nk j ),∀k ∈ Ti, ( j = x, y, z) (1)
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where k is a running index to sweep over the set of facets
Ti. The angle which indicates the curvature of the facets
is given by,

cos(θi j ) =
V j

|V⃗ |
. (2)

If θ in a cell exceeds a predefined angle threshold, then
the cell is tagged for division.

This procedure for division is very simple and robust.
One can have adaptive Cartesian cells automatically.

3.2 Fast Search for Intersected Triangles

The cell division criteria need the complete set of the tri-
angular facets which are intersecting a block cell. If you
simply traverse all the cells and triangles to check their
intersection, the computation cost is quite expensive.

Alternating Digital Tree (ADT) algorithm is a quite
effective to find intersecting candidates [3]. The ADT
maps bounding-box region in R3 as a point in R6. The
bounding-box contains a triangular facet. Figure8 shows
the case of a region in R1.

0 Xmin Xmax

Xmax

Xmin

Figure 8: Mapping of a region in R1 as a point in R2.

All the triangular facets are stored as points in hyper-
space R6 in the ADT, which is basically binary-tree in any
spatial dimensions. ADT recursively bisects a spatial re-
gion in alternate direction as is shown in Fig.9 in order to
add a new point in ADT.

Figure 9: Binary tree and a bisection process in ADT.

In N-dimensional space, a triangular facet bounded by
xk,min, xk,max the point in 2N hyperspace x⃗kis described as,

x⃗k = [x1
k,min, ..., x

N
k,min, x

1
k,max, ..., x

N
k,max]T , (3)

where k is a running index for the triangular facets of a
geometry in RN . The intersection condition with a cell

x

y

z
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Figure 10: Simulation Model

can be described simply as

ai ≤ xi
k ≤ bi for i = 1, 2, ..., 2N, (4)

where a⃗, b⃗ are

a⃗ = [0, ..., 0, x1
cell,min, ..., x

N
cell,min]T , (5)

b⃗ = [x1
cell,max, ..., x

N
cell,max, 1, ..., 1]T , (6)

xi
cell,min, x

i
cell,max are the minimum and maximum coordi-

nates of the cell, respectively. Note that [0, .., 0]T and
[1, ..., 1]T are the coordinate limits of the target geometry.

ADT only gives intersection candidates, so precise ge-
ometric intersection checks must be applied to obtain a
complete list of the intersected facets.

4 Evaluation

The section evaluate the accuracy and effectiveness of the
proposed method. And then, the actual speed of grid gen-
eration with a certain DXF geometry is evaluated.

4.1 Accuracy

As an evaluation case, we demonstrate wave excitation by
centre-located current as shown in Fig.10 and Eq.(7).

Jy(x, t) = e−
(x−x0)2

2∆x2 e−
(t−t0)2

2∆t2 cosω(t − t0), (7)

We demonstrate two normal FD-TD with coarse grid and
fine grid. Also we demonstrate the blocked Adaptive
Cartesian grid with third level, the depth of the octree,
around the current distribution and second level on the
other area. The distribution of the blocked cells are shown
in Fig.11. Each bounding-box contains 8x8x8 = 512
cells.

The grid width of coarse FD-TD is the same with that
of the second level and that of fine FD-TD is the same
with that of the third level.
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Figure 11: The distribution of blocked Cells.
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Figure 12: Electric Field Variation.

The results is shown in Fig.12 and the result of the fine
FD-TD and BAC FD-TD shows the good agreement. The
(effective) number of grids in the case is shown in Tab.4.1.
The number of grids corresponds to the amount of com-
putation of the schemes. The table shows the BAC is quite
effective in computation to get high accuracy.

4.2 Grid Generation

The most important algorithms in the grid generation is
ADT. According to [3], the computation cost to generate
unstructured finite element method grids are proportional
to N log(N), where N is the number of elements. The

The Grid Num.
Coarse FD-TD 35,937
Fine FD-TD 274,625
BAC FD-TD 159,720

Table 1: The number of grids of the case.

Figure 13: Electric field strength distribution on the
blocked adaptive Cartesian cells.

actual cost in the proposed method in a certain case is
evaluated here.

A fixed geometry of 616 triangular facets is used for
evaluation. The upper limit of level of ADT node is
changed from 3 to 6 for the fixed geometry. The actual
computation times are obtained as Fig. 14. The com-
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Figure 14: Computation time of the blocked cells genera-
tion with PowerPC 1.8GHz MacOS X 10.5. The number
of triangular facets of the model is 616.

putation time doesn’t include the cut-cell search in each
blocked cell.

As a typical case of the best performance of BAC
method, we generate mesh cells to solve a small PEC
sphere (radius=0.01m) centred in an area (1x1x1m). BAC
method generates blocked cells concentrated around the
sphere, the density is controlled by the upper level of oc-
tree node. Figure 15 show the comparison of BAC method
with equi-distanced FDTD in the case of giving the same
resolution. The spatial width of the mesh cells (δx) of
the FDTD is equal to the smallest δx of the mesh grids
of BAC method in the Fig.15. The total mesh cell num-
ber of the BAC methods is much smaller than that of the
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Figure 15: The number of mesh cells of BAC method au-
tomatically generated in the different level of octree and
that of the equivalent equi-distanced FDTD whose mesh
width is equal to the smallest width of the corresponding
BAC method.

equi-distanced FDTD in the case. The time step width
is limited by CFL condition, so the both methods use the
same time step width. This means they require the same
computational costs in the time integration per cell. The
mesh cell number indicates simply the cost of computa-
tion and memory.

If single precision of a set of physical values, electric
and magnetic field, is stored in a mesh cell, it is required
4× 6 = 24 bytes memory in the both methods. The octree
data of BAC method is a difference between the two meth-
ods. But the octree data only stores the nodes connectivity
so usually negligible. Especially, we adopts blocked cells
so the number of nodes is small. In the biggest case in
Fig.15, the number of blocked cells are 2864.

The computation cost in a mesh cell is defined by the
adopted scheme. The both methods adopts Leap-Frog
method so they are no difference in computational cost
per cell. BAC method requires an additional interpolation
of physical values to interchange the values between the
adjacent cells in different tree node level. The interpola-
tion cost should not be so large as the cost of computation
for a solution inside a block cell but isn’t estimated yet.

BAC method shows an excellent memory efficiency in
a certain case. The computation cost also indicates very
good efficiency.

5 Conclusion

The present paper proposes an adaptive Cartesian grid
method, namely blocked adaptive Cartesian grid method
to solve Maxwell’s equations with complex geometry.
The procedures to generate the octree-based Cartesian
grids for the complicated geometries are described. Al-
ternate Digital Tree algorithm is applied to the proposed
method in order to search speedily the intersected facets
of a geometry. The accuracy and effectiveness of the
present method is confirmed by comparing the conven-
tional FD-TD solutions. The computation cost of grid
generation is also shown as reasonable. A simple case is

demonstrated to compare the number of mesh cells to give
a same resolution in both BAC method and equi-distanced
FDTD. The results shows a very good efficiency in mem-
ory and computation of the proposed method.
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